Umesh Waghmare
Structural Transformation During Li/Na Insertion and Theoretical Cyclic Voltammetry of the δ-NH4V4O10 Electrode: A first-principles study
A double layer δ-NH4V4O10, due to its high energy storage capacity and excellent rate capability, is a very promising cathode material for Li-ion and Na-ion batteries for large-scale renewable energy storage in transportation and smart grids. While it possesses better stability, and higher ionic and electronic conductivity than the most widely explored V2O5, the mechanisms of its cyclability are yet to be understood.
Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12
Using first-principles simulations, we predict a high-performance solid electrolyte with composition Na10GeP2S12 for use in sodium–sulfur (Na–S) batteries. The thermodynamic stability of its structure is established through determination of decomposition reaction energies and phonons, while Na-ionic conductivity is obtained using ab initio molecular dynamics at elevated temperatures.
Ab initio Simulations Of A Novel Sodium Superionic Conductor
In the current study, using first-principles simulations, we present a case for a novel composition: Na10GeP2S12 (NGPS), for application in room-temperature Na-S batteries.Solid electrolytes can enable safer and high-energy density batteries than liquid electrolytes .Sodium solid electrolytes can help in reducing the shuttling effect , which causes capacity loss in the newly emerging room-temperature Na-S batteries.
Tuning electrochemical potential of LiCoO2 with cation substitution: first principles predictions and electronic origin
We simulate substitution of various elements (X = Be, Mg, Al, Ga, Si and Ti) for Co using first-principles density functional theory and predict changes in its electrochemical potential. While the electrochemical potential of LiCoO2 is enhanced with substitution of Be, Mg, Al and Ga for Co, an opposite effect is predicted of Si and Ti substitution.
Mechanism of Charge Transfer in Olivine-Type LiFeSiO4 and LiFe0.5M0.5SiO4 (M = Mg or Al) Cathode Materials: First-Principles Analysis
Olivine silicates LiMSiO4 (where M = Mn, Fe, Co, and Ni) are promising candidates for the next generation of cathode materials for use in lithium ion batteries (LIB). Among these compounds, LiFeSiO4 is an attractive choice due to its low cost, environmental friendliness, high safety, and stability In this work, we use first-principles density functional theory-based calculations to determine the structural and electrochemical properties of olivine-type LiFeSiO4 and LiFe05M05SiO4 (where M = Mg or Al).